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Introduction 
 
Mean-Variance Analysis is a common method used for making portfolio allocation 

decisions. The analysis uses the expected value, standard deviation, and covariance of several 

risky assets to produce a space which shows the infinite possible combination of these assets. 

When combined with a riskless asset, there is an “optimal risky portfolio” on the frontier which 

describes a portfolio that, at any level of risk, dominates all other portfolio allocations (Figure 1). 

In order to create an optimal risky portfolio, we must estimate the portfolio’s assets’ 

expected values, standard deviations, and correlation with one another. For a portfolio to be 

considered optimal it should maximize expected return for a given level of risk. According to the 

Markowitz-Frontier, there exists a distribution of several portfolios that strikes an efficient 

balance between risk and return.  

This paper seeks to update Smith, Steinberg, and Wertheimer (2008) which explores 

three different methods of estimating mean-variance analysis parameters, and their effect on 

portfolio performance. Using more recent data, this paper will examine the success of these three 

asset allocation strategies.  

The first approach to estimating these inputs solely uses observed historical returns; the 

typical method for this analysis. However, another approach that will be tested involves 

informed predictions from experts. Like Smith, Steinberg, and Wertheimer’s paper, this study 

will use expert opinions from the Philadelphia Federal Reserve’s Semi-annual Livingston survey. 
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The Livingston Survey is given to expert economic forecasters who are asked to provide their 

best predictions of the S&P 500 index level along with long-term Treasury Bond yields in the 

following month, 6-months, and 12-months following the survey. Finally, this paper will update 

the findings of using regression towards the mean for asset risk and reward estimation by 

combining these expert predictions of these parameters with observed historical data. These three 

estimations will be implemented to create and test three portfolios whose average return, 

standard deviation, and Sharpe ratio will be measured over 6-month time horizons.  

Smith, Steinberg, and Wertheimer’s paper ultimately found that optimal risky portfolios 

that were selected on the basis of observed historical data performed the worst while the 

regression-to-the-mean portfolios not only had a higher average return but also a higher Sharpe 

ratio. Their paper also found that the predictions of S&P 500 returns in the Livingston Survey to 

be both substantially and significantly negatively correlated with actual stock returns. 

 
 

Optimal Portfolios 
 

As mentioned in the original paper, portfolio allocation involves a model of utility 

maximization by the investor given the distribution of asset returns. By using mean-variance 

analysis, the investor uses the expected value and standard deviation of portfolio returns to 

maximize this expected utility. Ultimately, the weighting of  a portfolio,  , is chosen where theαi  

portfolio mean,  , for a given level of variance,  , constrained μμ =  ∑
n

i=1
αi i α σ σ ρσ2 = ∑

n

i=1
∑
n

j=1
αi j i j ij  

by,  , is maximized.∑
n

i=1
α1 = 1   
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When looking at the Markowitz frontier, the upper section of the curve is deemed the 

“efficient frontier” where standard deviation is the smallest at the apex. This frontier identifies 

all potential portfolio allocations that provide the highest expected returns for each given 

standard deviation, and, when combined with a risk-free asset, such as a short-term treasury bill, 

there is an “optimal risky portfolio. According to Tobin’s Separation Theorem, this optimal risky 

portfolio is located where the risk-free asset is tangent to the frontier. 

The portfolio allocation can only truly be optimal if the probability distribution is known, 

but, during estimation, there is often error with asset mean, standard deviation, and covariance 

that leads to suboptimal allocation, and, ultimately lower expected value than that of the optimal 

portfolio maximum value. 

This loss in expected utility and value is the result of the incorrectly estimated frontier. 

There are several reasons why this frontier might have been incorrectly estimated, but it is often 

due to the estimates being made on the basis of historical distributions of returns. However, 

investors might be able to avoid this loss of utility if they are able to more correctly estimate 

these probability distributions from these observed historical returns. 

 

Historical Estimates 
 

In contradiction to the efficient market hypothesis, there is evidence that using observed 

historical data to make estimations in mean-variance analysis can still outperform the market. 

Cohen and Pogue (1967) showed that Markowitz-frontier portfolios that used historical data for 

estimation performed better than randomly selected portfolios. 
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While historical data can be directly inputted as means for estimating future Markowtiz 

frontiers, one can use these data to instead inform their beliefs about future asset mean, variance, 

and correlation. If an investor sees that the S&P500 has returned more than 20% the previous 2 

years but currently seems at an unreasonably high level, it may not be accurate to assume another 

20% return, but rather weight the expected return with a smaller probability of a similar year. 

There are rational reasons why significant portions of pre-existing literature argue that 

predicting financial market performance is “perhaps the greatest challenge” (Didier Sornette, 

320). However, historical estimates can offer tremendous insight into investor sentiment during a 

given period, which could be useful in the construction of a strategy with a current, 

forward-looking scope. Since people’s expectations, greediness, and fear can “intertwine” and 

drive markets towards irrational highs and lows, awareness (Sornette, 321). An appreciation for 

this phenomenon and the tremendous uncertainty associated with it can be garnered from the 

examination of historical performance. In turn, an investor could use this information to adjust 

his forecasts and hopefully reduce the uncertainty surrounding an investment. Understanding the 

pitfalls of historical forecasts can allow an investor to contextualize historical data.  

Likewise, the intuition holds for asset volatility. Observed historical volatility of asset 

prices do not need to be directly inputted as estimation but rather can aid in forming beliefs about 

volatility going forward. Utilizing this approach makes sense when making estimates regarding 

assets like Treasury Bill rates. In the past 90 years, historical data would suggest that the 

standard deviation of Treasury Bill rates around the mean is about -3% to 5% but, when 

allocating a portfolio using mean-variance analysis, an investor would never want to use this 
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variance because there is no uncertainty about returns on Treasury Bills, and, thus, will always 

provide a standard deviation of 0. 

While the same logic regarding the volatility of Treasury Bills does not directly apply to 

the S&P 500 and long-term Treasury bonds, these assets should also reflect estimates of future 

uncertainty, rather than volatility during dissimilar economic periods. Smith, Steinberg, and 

Wertheimer’s paper provides the example of the Federal Reserve announcing plans to hold 

Treasury rates steady which still holds. While the historical standard deviation of Treasury rates 

might suggest more volatility, an investor knows from this announcement that there is little 

uncertainty regarding volatility, and, thus, a zero standard deviation can be used as an estimate. 

Lastly, estimations of correlations between stock and bond prices are rarely exactly the 

same as historical averages. Different economic periods in the past have produced both positive 

and negative correlation coefficients between stocks and bonds, so, ultimately, this correlation 

coefficient should depend on the uncertainty of interest rates and the strength of the economy for 

bond and stock return correlation.  

Changing interest rates can signal varying scenarios of economic conditions, with an 

increase being a result of a quickly expanding economy or a Federal Reserve contractionary 

policy, either of which would result in differing correlations of stock and bond returns. 

 
Regression Towards The Mean 

 
Gary Smith and Teddy Schall provide a convincing framework to analyze regression to 

the mean using examples in Major League Baseball. In athletics, particularly baseball, observed 

performance is not always a reliable measurement for a player’s true skill level (Smith & Schall, 

231). For instance, a hitter who receives the Triple Crown, which occurs when a single player 
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leads the Major League in home runs, batting average, and runs batted in (RBIs), is highly 

unlikely to repeat this performance. Frequently, a player with a Triple Crown performance will 

have worse batting statistics the following year and the preceding year. The regression to the 

mean explanation for this phenomenon would be that the batter’s skills did not increase 

dramatically and then “deteriorate, but rather that their unusually good performance [during the 

prior season] exaggerated their skills” (Smith & Schall, 231).  

This analysis can be useful in explaining abnormal performance in economic and 

financial variables. For example, consider a country with a relatively consistent level of GDP 

growth. If this country’s GDP growth jumps dramatically during one quarter, and there are no 

significant changes to macroeconomic health remains and the global economy, it is unlikely to 

witness this level of growth in the following quarter. Although this statement may seem 

pessimistic, the reverse is also true: a serious decline in a country’s GDP growth during one 

quarter will likely not be as bad in the proceeding one, barring any significant macroeconomic 

disturbance. 

Regression to the mean analysis is highly valuable for interpreting expert financial 

forecasters’ predictions. Generally, analysts with extremely optimistic and pessimistic forecasts 

are likely too excessive in their respective directions. Keil, Smith, and Smith [2004] confirmed 

that the companies with overly optimistic (pessimistic) earnings predictions tended to do better 

(or worse) than average, but closer to the average than predicted.  

 
Modeling and Implementing Regression Towards the Mean 

 
Given an actual return, Y, which as has a probability distribution with expected value m 

at a point in time, 
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Y = 𝝁 + 𝝎  ,  E[𝝁] = 0      (1)  

We then assume, X, or the expert forecast return is equal to that of the actual return’s 

expected value with an error score, 𝜺, which has a matching distribution and is independent: 

X = 𝝁 + 𝜺  ,  E[𝜺] = 0      (2) 

This paper’s model of regression towards the means seeks to infer the expected value of 

the return from the forecasted return, rather than make predictions of forecasts given known 

value of 𝝁. With data regarding 𝝁 and X, we would typically estimate: 

𝝁 = 𝜶 + 𝜷X + 𝝊  

With an OLS, or ordinary least squares, slope of: 

= β
︿

s2
X

cov[X , ]   

We then use this estimate to shrink the forecasts toward the mean: 

-  = ( - )μ︿ μ β
︿

X X   

Where we would expect the forecasts and actual values to be roughly the same as: 

 = + (       (3)μ︿ Xβ
︿

β)1 −  
︿

X  

Therefore,  is used to shrink the period’s expert forecast toward the average forecastβ
︿

 

over time in order to predict expected return. 

In this case, however, we are unable to use data for X and 𝝁 to estimate , and we do notβ  

observe 𝝁 directly, but rather we have an observed Y, which is given by the actual return. We 

can then estimate this equation using OLS: 

             Y =       (4)  δX  γ +  + ψ   

And this will give an estimated slope of: 
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δ
︿

=  s2
X

cov[X , Y ]  

 = s2
X

cov[X ,  ] + cov[X , ω]  

If cov[X, ]=0, then = and our estimate of can be used as an estimate of  𝜷. Thus,ω δ
︿

β
︿

δ  

Equation (3) can be implemented. Ultimately, each period’s prediction will be regressed toward 

the mean using the relationship between the predicted and actual returns. 

 
Data 

 
Similar to the previous paper on the topic written by Smith, Steinberg, and Wertheimer, 

this paper will use the Livingston Survey as the basis for the expert predictions. The Livingston 

Survey, initiated in 1946 by Joseph Livingston, consists of a semiannual survey that included 

predictions of macroeconomic variables by business economists. After Joseph Livingston passed 

away in 1978, the Philadelphia Federal Reserve Bank began to maintain and conduct the survey. 

The Federal Reserve of Philadelphia mails the survey to a wide variety of economic forecasters 

every May and November and the results are published each June and December. 

In accordance with the previous paper, we will use the level of the S&P 500 index and 

the secondary market interest rates on 10-Year Treasury Bonds. The survey asks the forecasters 

to predict what the values of each of these assets will be on the last day of the survey release 

month (June and December) and both six and twelve months after that date.  

The Livingston Survey started to report the yields of long-term treasury bonds and the 

level of the S&P 500 index in 1992, and up until December 2002, the survey asked to predict the 

yield on 30-year Treasury Bonds, and, in subsequent years, switched to forecasting the 10-year 
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yield. For the sake of consistency, this paper will also use the 6-month forecasts, and only uses 

the forecasts on 10-year Treasury Bonds for historical and forecasted returns. 

Mean-Variance analysis requires the calculation of predicted returns from the predicted 

levels of both Treasury Yields and S&P 500. In order to do this, we use the predicted values on 

the last day of the survey release month and compare that with the predicted values six months 

thereafter. Thus, if the survey was mailed in November 2014 and released on the last day of 

December 2014, to calculate the implied predicted return from purchasing bonds on the last day 

of December 2014 and selling on the last day of June 2015, we use the difference between the 

predicted level of the 10-Year Treasury on December 2014 and June 2015. 

To calculate the predicted return, , for the S&P 500 index, the dividend yield is addedR
︿

S  

to the forecasted capital gain: 

 

= R
︿

S P
︿

0

D  + P − P1
︿

1
︿

0  

 
Where  is the forecasted level of the S&P 500 at the end of the survey release monthP

︿

0  

and  is the level six months after that.  is the dividend paid during the six-month intervalP
︿

1 D1  

which is assumed to be known and paid upon the period ending. The same method is used for 

calculating the actual total return, , by using the actual values of the S&P 500 index at theR
︿

S  

survey release date and six months after: 

 
= RS P 0

D  + P − P1 1 0  

 
For the predicted return on the 10-Year Treasury bond calculation, it is assumed to have 

initially sold at par with a coupon to it’s yield to maturity. The predicted yield at the end of the 
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survey month is represented by , the predicted yield six months thereafter is represented byy︿0  

, the maturation value is represented by M where M = 100, and the number of semi-annualy︿1  

coupons is represented by n where n = 20. Thus, given C= 100, the bond’s initial price is equal2
y︿0  

to: 

P = + ∑
n

t=1

C
︿

(1+y )︿

0
t

M
(1+y )︿

0
n  

= + ∑
n

t=1 (1+y )︿

0
t

(y /2)100︿

0 100
(1+y )︿

0
n  

=100 

 
And the market price of the bond after six months is equal to: 

 

= + P
︿

1 ∑
n−1

t=1 (1+y )︿

0
t

(y /2)100︿

0 100
(1+y )︿

0
n−1  

 
Where  is equal to the forecasted yield to maturity when the bond is sold. The impliedy1  

predicted return is then calculated as: 

 

= R
︿

B P
︿

0

C  + P + P
︿

 
︿

1
︿

0  

 
The same method of calculation was used for the actual returns, , using the actualR

︿

B  

yields to maturity. 

 
Portfolio Construction 

 
This paper, like Smith, Steinberg, and Wertheimer’s, treats all semiannual data as 

independent, and, thus, we assume the investor knows about all other observations, regardless of 
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sequence. For example, if an observation were to be randomly selected, we could assume that all 

other observations in the data set have already occurred. 

Like Smith, Steinberg, and Wertheimer’s paper, we test the performance of three 

different portfolios. First, our benchmark portfolio is estimated using the historical return 

distribution, so the expected values, standard deviations, and correlations of assets are assumed 

to be equal to the averages of the data set. Moreover, our second portfolio estimation is provided 

by the Livingston Survey’s forecasts of the S&P 500 and 10-Year Treasury Bond yields in each 

six-month interval. These forecasts give us our expected values in our portfolio composition. 

Lastly, our regression-to-the-mean portfolio uses the relationship between the forecasted and 

actual returns and implements Equation (3) to create expected value estimates. This is done by 

estimating the slope of the relationship between the Livingston Survey values and actual values 

for the periods in our data set and using this regression to shrink these values toward the average 

return for other periods. 

Unlike Smith, Steinberg, and Wertheimer’s previous paper, to construct these three 

portfolios we chose to estimate correlations rather than covariance. However, we first need to 

calculate the covariance matrix of bond and stock returns by calculating the predicted and actual 

return’s squared difference for the six-month horizons, omitting the current period. The 

covariance matrix of squared errors for m observations serves as our posterior covariance matrix 

estimate of stock and bond returns: 

= σ︿2
ij m

(R −R )(R −R )∑
m

t=1
i i
︿

j j
︿
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Given i = j = S for stock variance, i = j = B for bond variance, and i = S and j = B for covariance. 

Similarly, historical forecasts use the historical covariance matrix derived from historical means 

and as estimates of expected returns:RS RB  

= S2
ij m−1

(R −R  )(R −R )∑
m

t=1
i i j j

 
In these periods, the observed differences between predicted and actual returns are used to 

estimate the covariance matrix in each period. We then divide by the product of the stock and 

bond standard deviations to determine estimates of correlation: 

=C ij σ σi j

cov[i, j]  

These expected returns, standard deviations, and correlation matrices are then used to 

create a Markowitz frontier from which we select an optimal risky portfolio. This paper also 

focuses on the optimal risky portfolio to combine with a riskless asset. The six-month Treasury 

bill is used as the riskless asset with return calculated from the quoted secondary market rates at 

the beginning of the six-month time horizons. 

 
Results 

 
Table 1 offers a comprehensive look at the predicted and actual returns for both stocks 

and bonds during each six-month period. The table also includes the quoted six-month Treasury 

bill returns that served as the risk-free asset. Similar to the results of the previous paper, the 

predicted stock returns varied greatly in magnitude, ranging anywhere from 2.14% to 47.78%, 

however, during no six-month period in the fourteen years did experts forecast a negative return 

on stocks. This is contrasted with predicted bond returns which not only had a small range, from 

-2.27% to 1.78% but also had only six periods in which experts predicted a positive return in 
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Treasury bonds. Moreover, it is clear that experts continue to take economic conditions into 

account, such as in December 2008, when forecasters predicted a recovery in the market after the 

crash. Unsurprisingly, survey predictions continue to be inaccurate with a correlation between 

predicted and actual returns of -0.07 for stocks and 0.384 for bonds. 

Unlike the previous paper, the correlations between predicted and actual stock returns are 

no longer overwhelmingly negative. However, while they are still negative, they now seem to be 

mostly uncorrelated, causing the opportunity to profit off knowing the forecaster who is usually 

wrong to disappear. Now, actual and predicted bond returns are positively correlated by a similar 

coefficient as the negatively correlated actual and predicted stock returns in Smith, Steinberg, 

and Wertheimer’s research. It has been consistently profitable to know the bond forecasters who 

are usually right. 

Table 2 shows the returns of the three portfolio strategies implemented. The Sharpe ratio 

in this table is calculated by taking the average difference between the portfolio returns and the 

T-bill returns and dividing the portfolio standard deviation. While similar to the previous paper, 

the portfolio had higher average returns than portfolios based on historical estimates, it also 

performed better on average than the Regression-to-the-mean portfolios. Moreover, the 

Livingston portfolios had the highest Sharpe ratio of the three portfolios as well (0.71). 

The adjusted forecasts of the Livingston predicted return estimates that were regressed to 

the mean no longer produced portfolios that had superior asset allocations to that of just expert 

predictions. While the regression to the mean portfolios still averaged higher returns than those 

based on historical estimates, the Sharpe ratio was substantially lower than that of the historical 

portfolios. A $1 investment in December 2005 would have yielded $5.01 by June 2018 in the 
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Livingston Survey Portfolios, $3.83 in the Regression-to-the-mean portfolios, and $2.56 in the 

historical estimate portfolios.  

 
Conclusion 

 
Historical return data is still used often as the basis of estimation when using 

mean-variance analysis. Moreover, a substitute for this method is to view these historical data 

and incorporate one's beliefs about asset expected return, standard deviation, and variance given 

the current economic environment. When allocating a portfolio, one might have information 

about the market that might be useful in selecting returns that are beyond what is observed in the 

historical data set. While this may be occasionally useful, even those deemed professional 

forecasters have difficulty understanding what future asset returns might look like. This finding 

is reasonable considering the tremendous macroeconomic factors, varying levels of idiosyncratic 

risk, and human spirits that impact individual stocks and the markets.  

This paper ultimately found surprisingly conflicting results with that of Smith, Steinberg, 

and Wertheimer’s  previous paper on the topic and this might be due to several reasons. We used 

the predicted returns from the Livingston Survey and adjusted these predictions by regressing 

them to the historical average predicted returns. Similarly, we regressed the variance-covariance 

matrices to the mean as well and used these estimates to perform mean-variance analysis and 

create optimal risky portfolios. 

 In this case, however, these regression-to-the-mean portfolios failed to out-preform the 

Livingston Survey portfolios and failed to have a better risk-reward profile than portfolios based 

on historical data. The biggest driver of this seems to be the expert predictions of consistently 

negative bond returns. The Livingston Survey provided forecasts which made it very unlikely for 
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bonds to be incorporated into any optimal risky portfolio. Thus, while actual bond returns mostly 

outperformed the predicted estimates, most optimal expert portfolios were comprised of solely 

stocks, which during this 13-year period provided returns that were substantial enough to 

outweigh more diversified portfolios. Regression-adjusted portfolios still provided higher 

average returns than historical data portfolios but neither had a higher return or Sharpe ratio than 

that of the Livingston Survey portfolios.  
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Table 1 Predicted and Actual Returns  
 

Forecast Date 
Predicted Stock 

Return 
Actual Stock 

Return 
Predicted Bond 

Return 
Actual Bond 

Return 
Actual T-Bill 

Return 

Dec 2005 3.92% 3.17% -0.37% -3.46% 2.11% 

Jun 2006 3.36% 12.07% 1.78% 5.91% 2.52% 

Dec 2006 3.46% 3.57% 0.76% -0.04% 2.45% 

Jun 2007 3.66% 1.84% 1.41% 10.26% 2.37% 

Dec 2007 3.49% -12.29% 0.40% 2.41% 1.69% 

Jun 2008 5.48% -27.58% 1.16% 16.80% 1.06% 

Dec 2008 14.22% 10.43% -1.34% -9.13% 0.14% 

Jun 2009 8.61% 14.06% -0.78% -0.76% 0.18% 

Dec 2009 47.78% -0.31% -1.02% 9.16% 0.10% 

Jun 2010 7.29% 15.21% -1.46% -1.19% 0.11% 

Dec 2010 4.68% 3.85% 0.24% 2.63% 0.10% 

Jun 2011 4.91% -1.65% -2.10% 12.76% 0.05% 

Dec 2011 4.22% 10.89% -1.05% 2.87% 0.03% 

Jun 2012 4.90% 4.54% -2.20% -0.12% 0.08% 

Dec 2012 3.24% 19.34% -1.63% -5.33% 0.06% 

Jun 2013 3.05% 10.71% -0.54% -3.00% 0.05% 

Dec 2013 2.91% 5.46% -0.65% 5.80% 0.05% 

Jun 2014 3.44% 7.67% -2.01% 4.34% 0.04% 

Dec 2014 2.66% 3.26% -2.27% -0.44% 0.06% 

Jun 2015 3.18% -1.82% -1.92% 1.86% 0.06% 

Dec 2015 2.99% 7.42% -1.28% 8.02% 0.24% 

Jun 2016 2.14% 4.05% -1.84% -7.35% 0.18% 

Dec 2016 3.51% 11.35% -0.82% 2.41% 0.31% 

Jun 2017 3.20% 9.23% -1.86% 0.39% 0.56% 

Dec 2017 4.89% 6.44% -1.51% -2.52% 0.75% 

Jun 2018 2.58% -10.06% -0.68% 2.76% 1.03% 

Dec 2018 3.00% 19.98% -0.43% 7.29% 1.25% 

Jun 2019 4.21% 9.39% -0.43% 1.69% 1.02% 

Average 5.89% 5.01% -0.80% 2.29% 0.78% 
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Table 2 Portfolio Returns 

 
 

 Historical Data Livingston Survey Regress to Mean 

Average Return 3.37% 6.03% 5.14% 

Standard 
Deviation 

4.01% 7.46% 9.13% 

Sharpe Ratio 0.67 0.71 0.49 
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Figure 1 Optimal and Suboptimal Portfolios  


